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NEURAL NETWORKS TODAY

They have similar problems:
▶ Over-Paramtrized
▶ High Complexity in operations
▶ HUGE use of space
▶ HUGE consume of energy
▶ Difficult to use locally
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NEURAL NETWORKS TODAY

▶ Some amount of parameters
• Llama 2: three versions with 7, 13 and 75 billion of parameters
• Alpaca: 7 billion of parameters
• BERT 109 million of parameters

▶ Some details in Llama 2 7B:
• 32 layers
• Each layer has 7 matrices

▶ 4 are size 4096 × 4096
▶ 3 are size 11008 × 4096
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WHY IS INTERESTING TO DO MATRIX COMPRESSION?

The models are a combination of layers, where each layer has a Matrix/Tensor.
The Matrices/Tensors are a great porcentage of the model.
Then we will be very interesting on compressing those matrices, with these two objective:
▶ Reduce the usage of space
▶ Maintain the performance of the model
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CATEGORIES OF COMPRESSION TECHNIQUES

The techniques to compress matrices can be divided in two:
▶ Lossy Compression
▶ Lossless Compression

Now lets study about them!
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Part II

LOSSY COMPRESSION
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DEFINITION

Definition 1.1

Lossy Compression or irreversible compression is the class of data compression methods that uses
inexact approximations and partial data discarding to represent the content.

Some techniques known to compress Matrices or Models are:
▶ Pruning
▶ Quantization
▶ Knowledge Distillation
▶ Low-Rank Factorization
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PRUNING

Pruning can be found in two ways:
▶ Structured Pruning
▶ Unstructured Pruning
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PRUNING
STRUCTURED PRUNING (ANWAR ET AL., 2017)

Elimination of entire structural components: neurons, channels, or layers.
▶ Objective: target a set of weights at once.
▶ Pros:

1. Reduce model complexity.
2. Reduce memory usage.

Maintaining overall structures.
▶ Cons: leaves redundancies!!

19 / 49



PRUNING
UNSTRUCTURED PRUNING (ZHANG ET AL., 2018)

Elimination of connections considered irrelevant for the overall network behavior.
▶ Simple pruning:

• Let α be a constant and W ∈ Rn×m a matrix.
1. If wij ≤ α, then wij = 0.
2. Otherwise, wij = wij .

• α can be layer-specific or set globally.
▶ More Complex Pruning:

• Use of regularization terms (L1 or L2).
• Using optimization strategies.

Pros: It is simple and generates a sparse matrix (something that we will like later).
Cons: Ignores model structure!!

20 / 49



QUANTIZATION
QUANTIZATION DEFINITION

Quantization’s objective is to fix the amount of bits that you can use to represent the weights.
The most simple quantization is to reduce the amount of bits in the numeric representations.
▶ 64 bits using double precision floating point
▶ 32 bits using single precision floating point
▶ 16 bits using half precision floating point
▶ 16 bits using integer
▶ 8, 4, 2 bits using even shorter integers
▶ 1 bit!

WARNING! Clearly reducing the representation this harshly can produce severe decay in performance.
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QUANTIZATION
QUANTIZATION - VIA SHARE WEIGHTS (SW)

Quantization via Share Weights has three phases:

1. Partition the weights into k categories and transform all into a unique representative value ci , for the
i-th category.

2. Cumulative retraining of the weights.

3. Storage of the shared weights.

In this part of the presentation, we will focus on the first point!
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QUANTIZATION
SCALAR QUANTIZATION VIA CLUSTERING-BASED SW (GONG ET AL., 2014)

▶ Given a matrix W ∈ Rn×m, can flatten in the vector w ∈ R1×nm.
▶ Apply k -means over w to divide the weights in k clusters, obtaining cinR1×k (cluster centers).
▶ Now, Wij = z, where zin[1, k ] and cz is the representative value for wij .
▶ With this, we can encode each centers in log2(k) bits and save the vector c!
▶ Another version is called: Entroy Constrained Scalar Quantization

• Same idea, but minimizing the distortion while you don’t exceed a threshold based on the
entropy
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QUANTIZATION
PRODUCT QUANTIZATION VIA CLUSTERING-BASED SW (GONG ET AL., 2014)

▶ Divide the matrix W ∈ Rn×m into s groups:

W = [W 1,W 2, . . . ,W s],

where W i ∈ Rn×(m/s).
▶ We applied k -means on each submatrix W i , obtaining c i ∈ Rk×(m/s), where c i

j is the representative
vector for the j-th row in the submatrix i .

With this, we can encode each vector c i
j using log2(k) bits and store each vector.
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QUANTIZATION
QUANTIZATION VIA UNIFORM SW (CHOI ET AL., 2020)

Given the matrix W ∈ Rn×m:
▶ Select representative weights uniformly in the weight domain.
▶ Transform weight wij to:

w ′
ij = δ · round

(
wij + d

δ

)
− d

where δ > 0 is the interval size and d ∈
[
− δ

2 ,
δ
2

]
.
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QUANTIZATION
QUANTIZATION VIA PROBABILISTIC SW (MARINÓ ET AL., 2021)

▶ Given the matrix W ∈ Rn×m, we get:
• wmin = minW
• wmax = maxW

▶ Thanks to this, we get the following:
• P(w = wmin) =

wmax−w
wmax−wmin

• P(w = wmax) =
w−wmin

wmax−wmin• E(w∥W = w ′) = w ′

▶ Because of pseudorandomly, the quantized matrix is highly compressible!
▶ This case was k = 2, but k > 2!
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KNOWLEDGE DISTILLATION (KD) (BA AND CARUANA, 2014)
DEFINITION

▶ The learning of a thinner model (student) is guide by a larger model (teacher)
▶ The output of the teacher act as a soft targets for the training process
▶ Objective: exploit the logits of the outputs of the teacher to distill the information to the student
▶ The student is trained minimizing the cross entropy between the logits of the teacher and student
▶ There are two types of KD: White-Box and Black-Box
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KNOWLEDGE DISTILLATION (KD) (BA AND CARUANA, 2014)
WHITE-BOX KD AND BLACK-BOX KD

▶ White-Box KD:
• Student has access to the predictions AND parameters of the teacher.
• Benefits: deeper understanding of teachers structures and representations.

▶ Black-Box KD:
• Student only has access to the predictions of the teacher.
• Emergent Abilities of this type:

▶ In-Context Learning
▶ Chain-of-Thought
▶ Instruction Following
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LOW-RANK FACTORIZATION

▶ Given a matrix W ∈ Rn×m of full rank r , it can be decomposed as W ≈ AH, where A ∈ Rn×r and
H ∈ Rr×m.

▶ Other approaches:
• SVD
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SOME PREVIOUS RESULTS

Figure. Comparison of different compression methods on ILSVRC dataset.1

1plots taken from this paper: Gong et al., 2014
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SOME PREVIOUS RESULTS

Figure. Best performance when quantizing convolutional layers and applying SLR or pruning followed by
quantization to FC layers of VGG19 (a) and DeepDTA (b)2

2plots taken from this paper: Marinó et al., 2023
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Part III

LOSSLESS COMPRESSION
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DEFINITION

▶ Lossless compression or reversible compression is a class of data compression that allows the
original data to be perfectly reconstructed from the compressed data with no loss of information.

▶ But also there is a characteristic that is important to maintain...

Apply operations DIRECTLY in the COMPRESSED information!
▶ In this context, matrix/vector multiplication!
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COMPRESSED SPARSE COLUMN (SAAD, 2003)

w =


1 0 1 0 0
0 1 0 0 0
1 3 0 0 5
0 0 0 0 0
0 0 0 0 5


nz = [1, 1, 1, 3, 1, 5, 5]

ri = [0, 2, 1, 2, 0, 2, 4]

cb = [2, 2, 1, 0, 2]

We define:
▶ w ∈ Rn×m

▶ s ∈ [0, 1]: ratio on non-zero elements
▶ b: is the amount of bits to encode the elements in nz

Space in bits: snm(b + log n) + m log n
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HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

But first!

Definition 3.1 (Shanon’s Entropy)

Given a set of symbols Z = {z1, . . . , zn} and the probability distrbution Pr .

HZ = −
∑
z∈Z

Pr(Z ) · logPr(Z )

Definition 3.2 (Huffman Codes)

Given a set of symbols Z = {z1, . . . , zn} and the corresponding counting {c1, . . . cn}.
Huffman encoding will encode the elements minimizing:

n∑
i=1

ci

n
· li

where li is the length of the code i.
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HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

w =


0 5 2 4
4 1 3 1
6 0 5 3
0 5 0 2



1. Apply Huffman Encoding to each element of the matrix w
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HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

w =


0 100 101 110

110 1110 11110 1110
11111 0 100 11110

0 100 0 101


2. Now, use the canonical variant of Huffman Codes (CHC)

symbol code
0 0
5 100
2 101
4 110
1 1110
3 11110
6 11111

l first_symbol first_code_l
0 0 0
1 0 0
2 1 16
3 1 16
4 4 28
5 5 30
6 - 32
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HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

HAM(w) = 0 110 11111 0 100 1110 0 100 101 11110 100 0 110 1110 11110 101

3. We join the binary string column-based order

symbol code
0 0
5 100
2 101
4 110
1 1110
3 11110
6 11111

l first_symbol first_code_l
0 0 0
1 0 0
2 1 16
3 1 16
4 4 28
5 5 30
6 - 32
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HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

HAM(w) = 0 110∥ 1111∥1 0 10∥0 111∥0 0 10∥0 101∥ 1111∥0 100∥ 0 110∥ 1110∥ 1111∥0 101

CHAM(w) = {6, 15, 10, 7, 2, 5, 15, 4, 6, 14, 15, 5}

4. Divide the bitstream in integers of b bits (e.g. b = 4)

symbol code
0 0
5 100
2 101
4 110
1 1110
3 11110
6 11111

l first_symbol first_code_l
0 0 0
1 0 0
2 1 16
3 1 16
4 4 28
5 5 30
6 - 32

If w doesn’t have repeated elements: bits(HAM) ≤ 3nm log nm + (nm)2 + b − 2 log nm
If w has k < nm distinct elements: bits(HAM) ≤ nm + nm log k + Bk
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SPARSE HUFFMAN ADDRESS MAP COMPRESSION (MARINÓ ET AL., 2023)

▶ If the matrix is sparse and very large, HAM is in trouble.
▶ sHAM does:

• Use CSC over the matrix.
• Use HAM for vector nz.
• The other vectors stay normal.

▶ Space:
• If the matrix contains snm non-zero distinct elements (excluding 0):

bits(sHAM(w)) ≤ snm (3 log(snm) + snm + b + log n)− log(snm) + m log n

• If the matrix contains snm non-zero elements and k < snm distinct elements (excluding 0):

bits(sHAM(w)) ≤ snm(1 + log k log n) + m log n + Bk
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GRAMMAR-COMPRESSED (PAOLO ET AL., 2022)

w =


5 0 2 3
4 1 3 1
5 0 2 3
5 0 2 0


V = [5, 2, 4, 3, 1]

S =

< 1, 1 >< 2, 3 >< 4, 4 > $
< 3, 1 >< 5, 2 >< 4, 3 >< 5, 4 > $
< 1, 1 >< 2, 3 >< 4, 4 > $
< 1, 1 >< 2, 3 > $
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GRAMMAR-COMPRESSED (PAOLO ET AL., 2022)

w =


5 0 2 3
4 1 3 1
5 0 2 3
5 0 2 0


V = [5, 2, 4, 3, 1]

S =

R1 < 4, 4 > $
< 3, 1 >< 5, 2 >< 4, 3 >< 5, 4 > $
R1 < 4, 4 > $
R1$
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GRAMMAR-COMPRESSED (PAOLO ET AL., 2022)

w =


5 0 2 3
4 1 3 1
5 0 2 3
5 0 2 0


V = [5, 2, 4, 3, 1]

S =

R2$
< 3, 1 >< 5, 2 >< 4, 3 >< 5, 4 > $
R2$
R1$
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GRAMMAR-COMPRESSED (PAOLO ET AL., 2022)

w =


5 0 2 3
4 1 3 1
5 0 2 3
5 0 2 0


V = [5, 2, 4, 3, 1]

S =

R2$
R3R4$
R2$
R1$
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GRAMMAR-COMPRESSED (PAOLO ET AL., 2022)

w =


5 0 2 3
4 1 3 1
5 0 2 3
5 0 2 0


V = [5, 2, 4, 3, 1]

S = R2$R5$R2$R1$

R = {R1 →< 1, 1 >< 2, 3 >,R2 → R1 < 4, 4 > R3 →< 3, 1 >< 5, 2 >,R4 →< 4, 3 >< 5, 4 >,R5 → R3R5
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TIME COMPLEXITY OF MATRIX/VECTOR MULTIPLICATION

▶ HAM: O(nm log k)
▶ sHAM: O(snm log k)
▶ Grammar-Compressed: O(|R|+ |C|)
▶ HAM and sHAM inscrease linearly based on the amount of the elements in the matrix
▶ Grammer-Compressed increased based the grammar rules
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Part IV

IS IT SOLVED?
THERE ARE SOME OPEN PROBLEMS...
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